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A ferromagnetic monolayer with model spin-orbit and 
dipole-dipole interactions 
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H H Wills Physics Laboratory, Royal Fort, 'pmdall Avenue, Bristol, UK 

Received 19 February 1993 

Abstract. We have considered a classical spin model of a ferromagnetic monolayer with 
model spin-orbit and dipoledipole interactions. which provide competing perpendicular and 
in-plane anisompies respectively. In particular we plot the zero lemperature phase diagram, 
which features, as well as the expected perpendicular and in-plane fmmagnetic phases, a 
series of wrexpected perpendicular antiferromagnetic phases although these are most imponant 
for anisompy parameter values higher than we would expect to see in real monolayers. A 
mean field theory at finite tempemtum predicts the existence of a first-order perpendicular 
to in-plane reorientation transition of the magnetization for certain values of the parameters. 
Computer simulations of this system wem attempted, but were unsuccessful because of the large 
conelation lengths arising. We draw the tentative conclusion that straightforward Monte Carlo 
and molecular dynamics simulation is not a practicable way to investigate this system, and note 
the important technical p i n t  that data parallelization of conventional Monte Carlo methods with 
infinitely long-range interactions is not possible. 

1. Introduction 

It was first pointed out by N&I [ I ]  that breaking the translational symmetry of a magnetically 
isotropic material (by introducing a surface) leads to the possibility of magnetically 
anisotropic terms in the Hamiltonian (a magnetic surface anisotropy). Specifically, he noted 
that if the anisotropy is written in a suitably general form, the leading pairwise term is zero 
in the bulk of a cubic crystal, but not at its surface. 

N6el's discussion was phenomenological. More recently a particular physical basis 
for the anisotropic terms involved has been considered (2-41 and calculated [5,6]. This 
magnetic surface anisotropy is thought to arise firstly from the dipole-dipole interaction, and 
secondly from the electron spin-orbit coupling. The d ipo ldpo le  interaction will lead to an 
in-plane anisotropy, and the spin-rbit term may lead either to in-plane or to perpendicular 
anisotropy. Since this is a surface effect, it may best be observed in systems with a high 
surface-to-volume ratio. Experimentally this is likely to mean thin films m multilayers; 
theoretically it is convenient to examine a two-dimensional system (a monolayer). We 
therefore investigate a plane of spins, attempting to determine its behaviour as a function 
of the two types of anisotropy. 

There are three important and much-studied limiting cases of this model: 

(i) If the anisotropies are both removed we recover the 2~ classical Heisenberg model. 
This has no magnetic order at non-zero temperatures since the ferromagnetic order is 
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destroyed by long-wavelength spin waves, as demonstrated by Mermin and Wagner [7,81. 
Various theoretical and simulation analyses have been performed on this system, see e.g. 
references [9-14]. 

(ii) If the anisotropy is such that the spins are confined to the plane they become two- 
dimensional and we have the 2D classical XY model which also lacks ferromagnetism, but 
features a Kosterlitz-Thouless transition [15,16]. Simulations of this system have been 
reported in references [17-191 

(iii) In the limit of strong perpendicular anisotropy the spins become one-dimensional 
giving the 2D Ising model with a finite Curie temperature Tc. ’ 

To gain an idea of physically realistic values of these anisotropy strengths we use the 
first-principles calculations of Gay and Richter [5] and of Guo etal [6], and the experimental 
results of Gradmann [20]. 

Two previous studies motivate us particularly to examine this system: the low- 
temperature mean field work of Jensen and Bennemann [2] which mats the magnetization 
and dipoldipole interactions in rather simplified ways, and the renormalization group work 
of Pescia and Pokrovsky [4]. Both predict the existence, for some values of the interaction 
constants, of a reorientation temperature TR below the Curie temperature, above which the 
magnetization is driven entropically from a perpendicular to an in-plane direction. Some 
experimental evidence of such a transition has been reported [21-231 and the perpendicular 
ferromagnetic state is of great importance in the technology of highdensity magnetic 
recording media. 

M B Taylor and B L Gyo& 

2. Details of the model 

In investigating this system we use the simplest model that can be expected to capture 

dipole-dipole interaction, and spin-orbit anisotropy: 
the physics of interest. We will study a Hamiltonian with terms representing exchange, 

% = ?&x + n d i p  f %so 

(1) 

where at each site i, at position ri, of a two-dimensional square lattice in the x-y plane is 
a classical Heisenberg spin (three-dimensional unit vector) U! = (U:. U:, U:), and where 

only. The parameters of the model are thus: 

J strength of the pairwise short-range (nearest neighbour) exchange interaction 
o strength of the pairwise long-range (F3)  dipole-dipole interaction 

T temperature 

This expression is effectively a discrete form of the Hamiltonian used by Pescia and 
Pokrovsky [41, and is an improvement on that used by Jensen and Bennemann [2.3] in that 
it does not simplify the dipolar interaction by representing it as a singlesite term. 

r.. ,, - - ~j - ri. ri, = Irijl, and the symbol ( i j )  denotes summation over nearest neighbours 

I A strength of the single site model spin-orbit term 
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The limiting cases mentioned in section 1 are achieved with the following values of the 
parameters: 

ZD Heisenberg: J > 0 A = 0 w = O  
m XY: J > O  A=-m 0 = 0  
ZD Ising: J > O  A=+W 0 = 0  

Physically, w must be non-negative, providing an in-plane anisotropy. J and A on the 
other hand may be positive or negative. We concem ourselves in this study only with 
the case J > 0, a ferromagnetic exchange, and A > 0, the spin-orbit term providing a 
perpendicular anisotropy. These choices are motivated by our interest in the perpendicular 
ferromagnetic state. Note that of the limiting cases listed above this excludes the ZD XY 
model. 

3. Ground states 

By inspection of the Hamiltonian ( I )  some facts about the ground states of the system can 
be inferred. 

We note first that, for the square lattice, the anisotropic terms in the Hamiltonian define 
no preferred direction within the plane so that states will be continuously degenerate with 
respect to azimuthal angle 4. 

If J is large compared with the other energies in the system, then we expect a 
ferromagnetic state. Given a ferromagnetic system, if the in-plane anisotropy w is large 
compared with the perpendicular anisotropy A the state will be in-plane ferromagnetic, and 
if A is large compared with w it will be perpendicular ferromagnetic. 

However, if A and w are both large compared with J we have a different situation: the 
high A forces all the spins perpendicular to the plane causing the term -(3/2)w cij(ui . 
rij)(u, . vij)rG5 in the dipoledipole interaction to vanish. The remaining part of the 
dipole-dipole interaction +(1/2)0 cij(ui. u j ) r i 3  acts like an antifemmagnetic term, and 
if w is sufficiently large this will overcome the exchange term, resulting in a perpendicular 
antiferromagnetic state of some sort. Such a state will be highly frustrated, since the dipols 
dipole interaction is long-ranged, so that every spin wants to be antiparallel to every other 
spin. 

The exact nature of such an antiferromagnetic sate is not immediately obvious. We 
expect two sublattices, one of spin up and one of spin down, which by symmetry will each 
occupy half of the lattice sites. To ascertain the geometry of these sublattices, computer 
simulations were performed, starting in a disordered state at high temperatures and cooling 
slowly to zero temperature (see section 6). The results of these simulations (i.e. the 
resulting zero-temperature states) are on their own somewhat inconclusive, since at low 
temperatures the system tended to settle into states which look glassy and metastable, but 
visual observation of graphical representations of them suggests the corresponding ordered 
states to which they may be close. This procedure is an alternative to the ground-state 
search method described by, e.g. Ducastelle [NI. For these large values of A, in which the 
low temperature states feature entirely perpendicular spins, the observed ground states seem 
to fall into three categories, characterized as foklows: 

(i) all spins in the same direction (either up or down), 
(ii) alternating stripes of up and down spins, of a characteristic width for given values 

(iii) a 'chequerboard' pattern of up and down spins. 
of A and w, 
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We therefore investigate the energies of the corresponding sets of ordered states, which 
we label as indicated 

ZFERRO perpendicular ferromagnetic state: U/ = + I  Vi 
CHECK chequered antiferromagnetic state: 

U/ = (I: r f + r , ! = 2 p  
rf + r,! = 2 p  + 1 

Sm~puI: striped antiferromagnetic state: 

+ I  2 p n + l  < r f  < 2 p n + n  I -1 2pn + n  + I < r; < 2pn + 2 n  
U/ = 

In the above r; = ( r f ,  r,!) is the lattice position of site i measured in units of lattice 
spacing, p represents any integer, and in all cases U: = U: = 0. Example STRlpEn phases 
are illustrated in figure 1. We compare these with the state we expect for small values of A: 

XFERRO: in-plane ferromagnetic state: ui 

.we have not distinguished between those states explicitly defined above and equivalent 
degenerate states. 

(U:, U!, U:) = (+I ,  O,O) 

F w r e  1. Pictures of example 
S~RIPUI spin states. with n = I and 
n = 3. All spins are perpendicular, 
and the symbols + and - refer to 
up and down spins (U; = +1 and 

BTRlPU of = -1) respectively. 

The energies per site of these states are given as follows: 

I 
4 

EXFZRRO = -25 - -Am 

where the values A,  C and S, are numerical constants depending on lattice geometry, 
defined using the spin states XFERRO, CHECK and STRlPEn respectively as: 
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2 -  

1.5- 

and these are calculated numerically, giving: 

A = + 9.0336 

C = - 1.3230 

Sj = - 0.4677 

Sz = + 0.7908 

= (2-l” - 1)A/2 

(7) 

... 
By manipulation of equations (2)-(5) we arrive at the zero-temperature phase diagram 
depicted in figure 2. The shaded rectangle near the origin represents the range of physically 
realistic values of o and A given in equation (13) and explained in section 4. 

3 1 ’  

I ! I 
/ STRIPE2 

10 12 14 

h 
Figure Z Zem-temperature phase diagram for the monolayer. STRIPU, phases are plolted for 
n ,< 100. u-f: slripes 1-6 respectively. The shaded rectangle near lhe origin indicates the 
physically realistic values for the model parameters (see section 4). All quantities are in units 
of J .  

We present also an algebraic characterization of the phase diagram by giving the 
following equations of the boundaries of the in-plane ferromagnetic phase with the 
perpendicular ferromagnetic and chequered antiferromagnetic phases respectively: 

XFERRO-0: 

(8) 
4 
3 

W A  = -h 

XFERRO/CHECK: 
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and the following expressions for the (A, w )  

coordinates of the triple points: 

XFERRO/CHECK/STRLPE I : 

XFERRO/STRIPEn/STRIF'E(n 4- 1): 

We draw particular attention to the high- boundary of stability of the phase ZFERRO: 
we have plotted SmIPEn phase boundaries up to n = 100 in figure 2, but it is not clear to 
us what is the lowest value of o at which a S T R w  phase is stable. On the highly plausible 
assumption that S, is monotonic in n we are then interested in the n + 00 limit of w in 
equation (1 1). which ought more simply to be equal to the following expression: 

4J @ERRo = lim 
n-)m n(A - Sn) '  

Using simple graphical methods to examine the first 100 values of S, we have been unable 
to determine the asymptotic behaviour of 4J/n(A - Sn); in particular it does not appear to 
be related ton  by a power law. However, it may be possible analytically or numerically to 
find an answer to this question. This point is clearly of great interest, since if w z R R o  is 
zero the perpendicular ferromagnetic phase is never a ground state of this system for finite 
o. Even if it is not zero, its value is of importance for the behaviour of physically realistic 
materials. 

The general features of the perpendicular antiferromagnetic phases CHECK and STRlPw2 
may be understood as follows: where the long-ranged antiferromagnetic tendency (o) is 
very strong the system will be as antiferromagnetic as possible, resulting in the chequerboard 
pattern of CHECK. However, as the nearest-neighbour ferromagnetic exchange (J) becomes 
relatively more important, there is a tendency to reduce the number of upldown spin 
boundaries, while the long range of the dipolar interaction still acts to ensure that oppositely 
oriented spins exist at some distance away, favouring striped phases. 

We have calculated energies for chequered states with squares larger than one lattice 
spacing, and none of these is stable, but we have no guarantee that there are not lower 
energy states which have not occurred to us. However, in view of the low temperature 
simulation results we think that this is unlikely. 

The ground states in figure 2 except for the XI Heisenberg case A = w = 0, are 
not unstable to the long wavelength spin waves which destroy ferromagnetic order in that 
model according to the Mmin-Wagner theorem 17.81; the fluctuations are prevented from 
diverging by an energy gap of zeroth order in a wave vector proportional to A 1251 and one 
of first-order proportional to w 1261. 

4. Physical values of the model parameters 

In this section we put rough bounds on the values of the model parameters J, o, A which 
might correspond to real physical systems. As a first approximation we consider the values 
the parameters would take to model a monolayer of iron. 
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We can estimate the exchange interaction J by supposing that J is the same for an iron 
monolayer as for bulk iron, and that bulk iron is adequately approximated by a nearest- 
neighbour classical Heisenberg ferromagnet. Then by using a series expansion value for the 
Curie temperature of a BCC Heisenberg ferromagnet kBTc = 2.06 J [27] and an experimental 
value of Curie temperature T F  = 1043K [28], we arrive at the estimate: 

J” % 40 meV. 

Theoretical 15.61 and experimental 1201 wok suggest values of the other parameters 
A % 0.5meV and o * 0.01 meV. These are rough estimates and values will clearly vary 
for different materials and environments, but we expect for all available materials: 

w / J  < 0.1 A / J  << 1 (13) 

and this region is indicated by the shaded rectangle near the origin of the zero-temperature 
phase diagram figure 2. 

Most systems will fall well inside this region so it can be seen that of the phases plotted 
the moa impoltant are XFERRO and ZFERRO. It can therefore be seen that most of the phase 
diagram plotted corresponds to values of w and A which we do not expect to see in real 
monolayers, but we feel that the statistical mechanical interest of these unphysical regions 
is sufficient to justify depicting them. 

We note also that cases of physical interest are far from the A = 00 2D king limiting 
case and near to the A = 0 ZD Heisenberg limiting case of the system, and we expect to see 
behaviour which is like a modified Heisenberg model, and unlike an Ising model. 

5. Mean field theory 

By making the substitutions: 

ut = (Ci) + 8Uj (14) 

in the Hamiltonian ( I )  and discarding terms in 8u, . hj, we can obtain a mean field 
Hamiltonian. Since we expect the ordered state to be ferromagnetic in the physical (small 
A, small o) region of the phase diagram we further assume homogeneity 

(U,)  = m = (m”, my, m’) (1-5) 

and thereby arrive at the following expression for the mean field free energy: 

F = -ksT lnTr eCPH 

1 = E [ (4J + $) (m“)’ + (45 + y )  (my)’ + (4J - wA)(m’)’ 
2 

- k B T N I n l k d $ l n  desinOexpj3 [ ( 4 J  + $) mx sin8 cos9 

mYsinOsinq5 + (45 - wA)m’cosO +Acos’O ] (16) 

where N is the number of sites in the system, ,¶ is the reciprocal temperature (ksT)-’, and 
A is the constant defined in equation (7). 
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Given this free energy F = F(m, J ,  T, w ,  A), which can be evaluated and manipulated 
numerically, the behaviour of the system can be determined. In particular the Curie 
temperature Tc and the temperature of the first-order reorientation transition TR can be 
located iteratively using the equations: 

where Ff and Fe are the values of the free energy when it is minimized with respect to m 
under the constraint of perpendicular and in-plane magnetization respectively. 

Sample free energy surfaces in the regions of these transitions are illustrated in figure 3. 

e 

Figure 3. Mean field Wry free energy surfaces (U)  as a function of temperature and 
magnetization m: Tc is that temperature at which the two minima walesce. and (b) as a Function 
of temperature and angle H ofthe magnetization from lhe vertical, TR is that temperature at which 
the minimum switches f” tJ = 0 to 0 = nI2. 

The finite temperature mean field phase diagram determined using equations (17) and 
(18) is plotted in figure 4. We expect this to be qualitatively correct for values of w and 
A sufficiently small that the perpendicular antifemmagnetic phases are not important and 
sufficiently large that Mermin-Wagner fluctuations do not destroy the ferromagnetism at 
temperatures significantly above zero. Rather small values of w and A, even within the 
range given in equation (13). are plotted so that the former of these conditions is most 
likely to be satisfied (for indications that the latter is likely to be satisfied see figure 5 and 
its discussion) and because most real materials will probably lie in this range. 

Solution of a mean field theory accommodating the large n STRIPEn phases (the only 
physical ones) would require considerable computational effort, and has not been attempted. 
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1 . 2 -  
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0.2-  
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00 

(a)  Paramagnetic 

% 

- Ferromagnetic; 
in-plane 

- 

0.h5 0.05 

T 

h 
2 

Figure 4. Mean field 7 against 1 phase d i w s  for small A. w monolayers. (a) shows the 
phases for (U 0.01 J. and (b) shows the variation of the m i t i o n  !P.mpe” far some 
physically likely values of 0 .  All quantities are in uniU of 1. 

6. Computer simulation 

The most powerful computing hardware available to us was a massively parallel (32 x 32 
[8+ 11-bit processors) AMT DAP 5 1OC. The architecture of this machine. is Single Instruction 
Multiple Data (SIMD), allowing efficient performance of an algorithm which exhibits data 
parallelism (the same operation may be performed on many data simultaneously), but not 
one which only exhibits algorithmic parallelism (several qualitatively different operations 
may be performed simultaneously). 

For computer simulation of an idealized spin system such as this, the obvious method 
is Metropolis Monte Carlo [29,301, but a problem arises with data parallelization of the 
Monte Carlo algorithm. 

Conventionally in Monte Carlo simulation, each step (modification of the spin state) 
requires making an alteration to a single spin and assessing the difference 611 this makes in 
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the energy of the system. hoviding that the change in energy associated with a spin U; at 
site i is not affected by the state of a spin uj at site j ,  then attempted updates can be made 
to the states of spins U; and uj simultaneously as required. However, if spins ai and U, 
are neighbours in terms of interaction range this is no longer possible, since the change in 
energy associated with the modification of spin U; is undefined if spin uj is simultaneously 
being modified so that it has no determinate state. Formally, spins U( and uj can be updated 
simultaneously only if: 

Thus, except in a (rather uninteresting) non-interacting spin system, it is not possible to 
update all spins in parallel. Some parallelization can be pe~ormed, however, by splitting 
the set S of all sites i into subsets RI such that: 

= O  V i , j G R I ,  i # j  : -- a*n 
au;auj 

and then for each I, the spins at all the elements of RI can be updated simultaneously. If 
this splitting can be done in such a way that the size of all the subsets RI are multiples 
of the number of processors (in our case 1024) then the problem can be parallelized with 
maximal efficiency (i.e. without leaving any processors idle). Typically it is convenient to 
perform this decomposition into subsets so that all RI are equivalent (mappable onto each 
other by translation) and as large as possible. A simple example of such a procedure is the 
case of nearest-neighbour interactions on a two-dimensional square lattice, in which case 
the lattice may be decomposed into two square sublattices RI and RZ like the black and 
white squares on a chess board. 

As the range of interactions becomes longer this lattice decomposition procedure 
becomes more difficult. An interaction of infinite range (one in which there is no cut- 
off) may be defined as follows: 

$ 0  
a% 

Vi, j E S, - auiauj 
and in this case the largest subset RI that can be selected is one site. We therefore conclude 
that data parallelization of conventional Monte Carlo simulation of systems with infinitely 
long-ranged forces is not possible. 

This is an important fact which we have not seen pointed out elsewhere, and it will 
become more important as parallelization becomes a more common way of increasing 
computer power [31]. 

The only solution appears to be an ‘unconventional’ Monte Carlo in which each trial 
modification in the state of the system would consist of a small change in each of the spins 
rather than a large change in a single spin. Although this achieves data parallelism so that 
no processors need lie idle it will not allow a high rate of lattice updates per unit time, so 
it seems unlikely that it will be. efficient. It may however deserve further investigation as a 
method of introducing spin waves rather than spin flips as trial spin state modifications. 

For this reason we simulated using the molecular dynamics method [30] instead. 
Molecular dynamics is an inherently parallel method and does not present the same problems 
as Monte Carlo methods. For spin systems such as ours this involves introducing artificial 
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dynamics and is probably slightly less efficient than Monte Carlo methods. but seems 
otherwise satisfactory. Some test Monte Carlo simulations were performed (on a scalar 
processor) for comparison, and good agreement between the Monte Carlo and molecular 
dynamics results was found. 

The simulation was performed on a square L x L cell with periodic boundary conditions, 
and an Ewald sum [32] was used to take account of its periodic images for evaluation of 
the long-ranged dipolar interaction energy. 

Unfortunately, the simulations produced no conclusive results. The reason for this was 
that the correlation length 5 became larger than the linear dimension L of the simulation 
box at temperatures significantly above the Curie temperature. Simulation results at lower 
temperatures could then not be trusted, so that neither of the transitions of interest was 
represented reliably by the calculations. That this divergence could not be assumed to be in 
the immediate vicinity of Tc was demonstrated by the fact that 5 became comparable with 
L at T % 0.75 for the system o = h = 0, the XI Heisenberg model, for which TC is known 
to be zero [7,8]. It is therefore clear that accurate results are not available near enough the 
critical region for the usual finite size scaling methods to be of use. 

Test simulations, not reported here (but see [33]), were performed in various regions 
of the phase diagram and in no case did they lead to reliable conclusions concerning this 
system. By careful analysis of the results, particularly of the spin-spin correlation function 
for the case h = w = 0, it seemed likely that the simulation box size used was too small by 
several orders of magnitude. We therefore regretfully conclude that a computer simulation 
of this type is unhelpful in investigating this system at finite temperatures. 

However, as mentioned in section 3 simulation results provided important indications 
about the ground states. 

7. Discussion and comparison with other results 

We are not familiar with any other work on this or similar systems which has identified 
the striped or chequered perpendicular antiferromagnetic phases shown in figure 2, although 
our simple energy considerations leave us in no doubt that they are more stable at low 
temperatures than the ferromagnetic phases usually assumed to dominate the phase diagram, 
and our simulations suggest that they are indeed ground states of the system. The lack of 
consideration of these phases in  previous studies is no doubt a consequence of the fact that 
for values of the anisotropy parameters corresponding to real physical materials these phases 
are not obvious, but we reiterate from section 3 that it  seems possible to us that the limit of 
large-striped phases extends down to the limit of small o, in which case the perpendicular 
ferromagnetic state would not be stable for any finite value of w. The fact that perpendicular 
ferromagnetism is seen experimentally could be compatible with this as a consequence of 
finite sample size, or of external fields applied for magnetkation measurements which could 
act to stabilize the ferromagnetic phase. 

Conceming finite temperature behaviour of the system, however, since simulations have 
failed to provide positive results, we have only the mean field ones of section 5. The mean 
field values for Tc(h,o) and T ~ ( h , w )  shown in figure 4 can be compared with those 
predicted by other theories. 

We consider first the work of Jensen and Benneman [2,3]. Using a rather simplified 
mean field approach, they find a reorientation transition in agreement with our expectations, 
but they predict that the transition will, under certain circumstances, be continuous, 
proceeding via a canted magnetic state of which we see no evidence. They also predict 



4538 M B Taylor and B L C y o m  

h 
Figure 5. Polyakov renormalization goup phase diagram for monolayer from [41 (labelled solid 
lines), compared with the mean field phase diagram f" figure 4 6 )  (unlabelled broken curves). 
All quantities are in unitr of J ,  

that the magnetic order will decay in a range of 20-30 K around TR. However, their model 
treats the dipolar and uniaxial anisotropies in the same way, effectively as single-site terms, 
merely reversing the sign between the tWo [3], and this is quite inadequate since the dipolar 
interaction only stabilizes the ferromagnetic state in virtue of its long-range nature. Our 
mean field theory treats the dipolar interaction correctly as pairwise and long-ranged and is 
in agreement with their prediction of a reorientation transition, although not with the other 
details mentioned above. 

Pescia and Pokrovsky (41 have applied an adaptation of a renormalization group method 
developed by Polyakov [34]. This, unlike the simple mean field theory, correctly predicts the 
absence of finite temperature magnetization for the 2 0  Heisenberg model, so the crossover 
between this case and the small but finite o, A case is of particular interest to us. Expressions 
for the transition temperatures from this theory are as follows: 

xJ(4A - 3Aw) 
TR = 

A(ln J - In A) 

A phase diagram corresponding to these expressions is plotted in figure 5 where it is also 
compared with the mean field mult already given in figure 4@). Concerning the crossover 
between isotropic and anisotropic behaviour we see that it is very rapid: only very small 
values of A are needed to stabilize the ferromagnetism even at high temperatures and to 
bring TC to near its mean field value of the order of J. Thus we might suppose that the 
mean field theory which is unable to describe the instability of the pure isotwpic case is a 
reasonably good approximation even for the rather small o, A of interest to us. 

This is encouraging, but certainly there are doubts as to the validity of equations (22) 
and (23). It is quite clear that within this theory the dipolar anisotropy is not dealt with 
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correctly, since TC is independent of w ,  and in particular (Tc)~=o 0 for all values of 
W .  i.e. the dipolar interaction is not capable of stabilizing the ferromagnetic state. This is 
certainly not the case [261. 

Furthermore, the recent work of Levanyuk and Garcia 1351 claims that the Polyakov 
renormalization procedure is inappropriate for anisotropic spins at low temperatures. 
Levanyuk and Garcia investigated this model themselves using an ingenious low temperature 
expansion, and found no evidence for a reorientation transition. This is contrary to 
our expectations, based on the persuasive entropic arguments emphasized by Jensen and 
Benneman as well as our own mean field results. Since the approach of Levanyuk and 
Garcia is a low temperature one, the status of the mean field theory at high temperatures is 
somewhat uncertain. It may also be relevant for the comparison of results that the model 
explored here is classical in contrast to the quantum mechanical system of [351. 

8. Conclusions 

We have modelled a magnetic monolayer with a nearest-neighbour ferromagnetic exchange 
interaction, a long-range dipolar interaction, and a single site spin-orbit-type anisotropy. 

We have mapped exactly most of the zero-temperature phase diagram and we have 
discovered, rather unexpectedly, a series of perpendicular antiferromagnetic phases which 
to our knowledge were not previously known to exist. These phases are most pronounced 
for values of the interaction parameters much larger than those we would expect for a 
real monolayer, but depending on the behaviour in the limit of large modulation length of 
the antiferromagnetic phase boundaries, which we have been unable to determine, these 
phases may replace the ferromagnetic perpendicular state as the ground states of some real 
monolayers. 

We have failed to perform useful simulations of this system, and draw the tentative 
conclusion that straightforward Monte Carlo or molecular dynamics simulations of 
practicable sizes cannot be used to investigate it. We note also the important technical point 
that data parallelization of conventional Monte Carlo simulation of systems with infinitely 
long-range interactions is not possible. 

We have formulated and solved, for physically realistic values of the anisotropy 
parameters, a finite temperature mean field theory which treats the dipolar interaction 
correctly as pairwise and long-ranged, and this exhibits an entropically driven first 
order reorientation transition at a temperature TR from the perpendicular to the in-plane 
ferromagnetic state, and a Curie temperature Tc. In predicting a reorientation transition 
the mean field theory is in agreement with the previous work of Pescia and Pokrovsky 
[4] and of Jensen and Benneman [2,3], but not with that of Levanyuk and Garcia [35]. 
Our disagreement with [35] may be a consequence of our use of classical, rather than 
quantum mechanical spins, although it should be remembered that the treatment of Levanyuk 
and Garcia is essentially a low temperature one. We feel on entropic grounds that the 
reorientation transition ought to exist 121, but have no proof that the mean field theory 
predicts the correct behaviour in this respect. 
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